Estimating Propensity Parameters Using Google PageRank and Genetic Algorithms
نویسندگان
چکیده
Stochastic Boolean networks, or more generally, stochastic discrete networks, are an important class of computational models for molecular interaction networks. The stochasticity stems from the updating schedule. Standard updating schedules include the synchronous update, where all the nodes are updated at the same time, and the asynchronous update where a random node is updated at each time step. The former produces a deterministic dynamics while the latter a stochastic dynamics. A more general stochastic setting considers propensity parameters for updating each node. Stochastic Discrete Dynamical Systems (SDDS) are a modeling framework that considers two propensity parameters for updating each node and uses one when the update has a positive impact on the variable, that is, when the update causes the variable to increase its value, and uses the other when the update has a negative impact, that is, when the update causes it to decrease its value. This framework offers additional features for simulations but also adds a complexity in parameter estimation of the propensities. This paper presents a method for estimating the propensity parameters for SDDS. The method is based on adding noise to the system using the Google PageRank approach to make the system ergodic and thus guaranteeing the existence of a stationary distribution. Then with the use of a genetic algorithm, the propensity parameters are estimated. Approximation techniques that make the search algorithms efficient are also presented and Matlab/Octave code to test the algorithms are available at http://www.ms.uky.edu/~dmu228/GeneticAlg/Code.html.
منابع مشابه
The Second Eigenvalue of the Google Matrix
We determine analytically the modulus of the second eigenvalue for the web hyperlink matrix used by Google for computing PageRank. Specifically, we prove the following statement: “For any matrix , where is an row-stochastic matrix, is a nonnegative rank-one row-stochastic matrix, and ! " , the second eigenvalue of has modulus # $&%'#( ) . Furthermore, if has at least two irreducible closed subs...
متن کاملGoogle matrix and Ulam networks of intermittency maps
We study the properties of the Google matrix of an Ulam network generated by intermittency maps. This network is created by the Ulam method which gives a matrix approximant for the Perron-Frobenius operator of dynamical map. The spectral properties of eigenvalues and eigenvectors of this matrix are analyzed. We show that the PageRank of the system is characterized by a power law decay with the ...
متن کاملOptimization of Cutting Parameters Based on Production Time Using Colonial Competitive (CC) and Genetic (G) Algorithms
A properly designed machining procedure can significantly affect the efficiency of the production lines. To minimize the cost of machining process as well as increasing the quality of products, cutting parameters must permit the reduction of cutting time and cost to the lowest possible levels. To achieve this, cutting parameters must be kept in the optimal range. This is a non-linear optimizati...
متن کاملLocal Aspects of the Global Ranking of Web Pages
Started in 1998, the search engine Google estimates page importance using several parameters. PageRank is one of those. Precisely, PageRank is a distribution of probability on the Web pages that depends on the Web graph. Our purpose is to show that the PageRank can be decomposed into two terms, internal and external PageRank. These two PageRanks allow a better comprehension of the PageRank sign...
متن کاملThe Effect of New Links on Google Pagerank
PageRank is one of the principle criteria according to which Google ranks Web pages. PageRank can be interpreted as the frequency that a random surfer visits a Web page, and thus it reflects the popularity of a Web page. We study the effect of newly created links on Google PageRank. We discuss to what extent a page can control its PageRank. Using asymptotic analysis we provide simple conditions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016